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ABSTRACT

The rapid development of miniaturized satellite instrument technology has created a new opportunity

to deploy constellations of passive microwave (PMW) radiometers to permit retrievals of the same Earth

scene with very high temporal resolution to monitor cloud evolution and processes. For such a concept to

be feasible, it must be shown that it is possible to distinguish actual changes in the atmospheric state from

the variability induced by making observations at different Earth incidence angles (EIAs). To this end, we

present a flexible and physical optimal estimation-based algorithm designed to retrieve profiles of atmo-

spheric water vapor, cloud liquid water path, and cloud ice water path from cross-track PMW sounders. The

algorithm is able to explicitly account for the dependence of forward model errors on EIA and atmospheric

regime. When the algorithm is applied to data from the Temporal Experiment for Storms and Tropical

Systems Technology Demonstration (TEMPEST-D) CubeSat mission, its retrieved products are generally

in agreement with those obtained from the similar but larger Microwave Humidity Sounder instrument.

More importantly, when forward model brightness temperature offsets and assumed error covariances are

allowed to change with EIA and sea surface temperature, view-angle-related biases are greatly reduced.

This finding is confirmed in two ways: through a comparison with reanalysis data and by making use of brief

periods in early 2019 during which the TEMPEST-D spacecraft was rotated such that its scan pattern was

along track, allowing dozens of separate observations of any given atmospheric feature along the satellite’s

ground track.

1. Introduction

Satellite-based passive microwave (PMW) radiome-

ters have been used for several decades to measure

atmospheric water vapor and bulk cloud properties

such as total liquid water path and total ice water path

(e.g., Wilheit and Chang 1980; Greenwald et al. 1993;

Wentz 1997; Boukabara et al. 2010). PMW instruments

also provide some of the most important observations

for operational data assimilation (Geer et al. 2017).

Recently, rapid advances in miniaturized satellite in-

strument technology have opened the door to making

PMW measurements from U-class satellites known

as CubeSats. These much smaller satellite platforms

could allow a larger number of satellites to be launched

and many more PMW observations to be made, com-

bining high temporal resolution that is unachievable

from existing PMW satellite instruments with sensi-

tivity to changes below the cloud top that is missing

from geostationary visible and infrared measurements.

This would provide both operational forecasters and data

assimilation systems with additional useful information.

Moreover, while traditional PMW missions have fo-

cused on global mapping, cost-efficient PMW CubeSat

missions facilitate the design of process-oriented studies

that make use of constellations or ‘‘trains’’ of satellites to

make repeated observations of atmospheric phenomena
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that occur on time scales of a few minutes to an hour or so

(Ma et al. 2017). The proposed Temporal Experiment for

Storms and Tropical Systems (TEMPEST) mission would

consist of a cluster of 6–8 CubeSats carrying identical

PMW radiometers in the same orbital plane. They would

be separated by only a few minutes and thus could make

repeated measurements of the same convective cells in

order to better understand the evolution of these storm

systems and the forcing and feedbacks between convection

and midtropospheric water vapor. An illustration of the

concept is presented in Fig. 1.

To realize these potential applications of PMW

CubeSat missions, it is necessary to demonstrate that

they can provide science-quality measurements that

are on par with those provided by similar instruments

on larger satellites. For potential constellation ‘‘trains’’

designed to study cloud processes, one must also de-

termine whether actual changes to the atmospheric

state that occur over only a few minutes can be dis-

tinguished from the uncertainties involved in making

measurements from two different satellites with dif-

ferent slant paths through the atmosphere (as illus-

trated in Fig. 1, even two satellites in the same orbital

plane will view the same spot on Earth from slightly

different angles because of the rotation of Earth during

the time between successive observations).

With the launch of the TEMPEST Demonstration

(TEMPEST-D) CubeSat, a technology demonstration

mission currently in orbit (Reising et al. 2018), it is now

possible to begin addressing some of these questions di-

rectly. In particular, using yaw maneuvers performed

by the TEMPEST-D spacecraft, we can assess view-angle

biases in a novel way, by comparing retrievals made by

the same instrument at nearly the same time and over

nearly the same area, but from different view angles. In

this paper we apply the CSU 1DVAR retrieval algorithm

(Schulte and Kummerow 2019; hereinafter SK19) to

TEMPEST-D observations to retrieve total precipitable

water (TPW), cloud liquid water path (LWP), and cloud

ice water path (IWP) to answer two key questions:

1) Do the TEMPEST-D measurements yield TPW,

LWP, and IWP estimates that are consistent with

those from the Microwave Humidity Sounder (MHS)

class of PMW radiometers?

2) Do the TEMPEST-D estimates exhibit any bias as a

function of view angle, and are the view-angle-related

uncertainties small enough that real changes in the

atmospheric state can be distinguished from mea-

surement uncertainty?

In section 2 we further describe TEMPEST-D as well

as our other data sources. Section 3 provides a brief

overview of the CSU 1DVAR algorithm and describes

how we construct error covariance matrices and forward

model brightness temperature offsets. In section 4 we

answer the key questions outlined above, and in section 5

we discuss implications for future satellite missions.

2. Data

The TEMPEST-D satellite was launched on 21 May

2018 on a commercial resupplymission to the International

Space Station and was successfully deployed into an orbit

with an altitude of 400 km and inclination of 51.68 on

FIG. 1. Conceptual illustration of a TEMPEST train of CubeSats.
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13 July 2018. The 6U (34 cm 3 20 cm 3 10 cm)

CubeSat carries as its main payload a five-channel

passive microwave radiometer operating in bands

centered at 87, 164, 174, 178, and 181GHz. The

87-GHz channel has quasi-vertical polarization (ver-

tical polarization at nadir), whereas the other chan-

nels have quasi-horizontal polarization. Additional

technical specifications are provided in Table 1, along

with comparable values for the MHS radiometer,

which operates at a similar set of frequencies on board

the MetOp-A, MetOp-B, MetOp-C, and NOAA-19

spacecraft. Note that the mass and power of TEMPEST-D

are far lower than those of operational PMW sensors

and also that TEMPEST-D has noise characteristics [as

measured by noise equivalent differential temperature

(NEDT)] that are similar to those of MHS despite a

significantly shorter integration time. For the same inte-

gration time, TEMPEST-D has lower noise than MHS.

Because of the roughly 1-yr period of time during

which TEMPEST-D has been making measurements, as

well as limitations in transmitting the collected data

from the spacecraft to the ground, only limited data are

available with which to evaluate the TEMPEST-D

measurements and retrieval algorithm. This makes a

comprehensive validation study difficult but does not

prohibit our objectives—namely, demonstrating general

agreement with MHS observations and examining view-

angle-related biases. In this study, we use one week of

continuous data from 8 to 14 December 2018 to meet

the first objective and to calculate forward model bias

corrections.

For the second objective, we make use of special pe-

riods during which the TEMPEST-D spacecraft was

intentionally yawed by 928, thus providing along-track

scanning during portions of the descending node of each

orbit and nearly along-track scanning during the other

periods (the exact degree to which the scans overlap is

dependent both on the latitude and the direction of

spacecraft motion). This dataset is to our knowledge the

first of its kind from a spaceborne sensor and provides

multiple observations of certain points on Earth from

wide-ranging view angles by the same instrument and at

nearly the same time. All told, we have collected about

73 h (or about 11.5 million retrieved pixels) of along-

track observations, during January and April 2019.

Ancillary data (surface wind speeds, surface pressures,

temperature profiles, and sea surface temperatures) used

by the CSU 1DVAR retrieval algorithm are taken from

the Goddard Earth Observing System Model, version 5

(GEOS-5; Molod et al. 2012). The a priori water vapor

profile used by the algorithm also comes from GEOS-5.

GEOS-5 data are used (unlike reanalysis data as in

SK19) to be able to run the retrieval in near–real time.

We examine coincident overpasses between TEMPEST-

D and MHS, and compare the values retrieved by the

TEMPEST-D algorithm with the corresponding MHS

values from the Microwave Integrated Retrieval System

(MiRS; Boukabara et al. 2011) and with CSU 1DVAR

retrievals run on the MHS data. MiRS Orbital Level-2

output is obtained from the NOAA Comprehensive

LargeArray-Data Stewardship System (CLASS), andwe

use version 11.2 of the algorithm. All satellites carrying

an MHS sensor also have an Advanced Microwave

Sounding Unit–A (AMSU-A), which has 15 channels at

frequencies ranging from 23.8 to 89.0GHz and is pri-

marily used for temperature sounding. Note that radi-

ances from this instrument are taken into account in the

MiRS algorithm but not in the CSU 1DVAR algorithm.

3. Methods

a. CSU 1DVAR

The algorithm with which we retrieve TPW, LWP,

and IWP from TEMPEST-D brightness temperatures

Tb is an extension of the optimal estimation algorithm

developed in Duncan and Kummerow (2016). In brief,

the 1DVAR or optimal estimation technique is an in-

verse method based on Bayes’s theorem, that is,

P(xjy)5P(yjx)P(x)
P(y)

. (1)

In this case, y is the measurement vector containing the

observed Tb and x is the state vector consisting of the

TABLE 1. Selected sensor specifications for TEMPEST-D and MHS.

TEMPEST-D MHS

Channel frequency (GHz) 87, 164, 174, 178, and 181 89, 157, 183 6 1, 183 6 3, and 190

Mass 3.8 kg 63 kg

Power 6.5W 74W

Altitude 400 km 820 km

Resolution at nadir 12.5 km (25 km at 87GHz) 15.9 km

NEDT (K) 0.2, 0.3, 0.4, 0.4, and 0.7 0.22, 0.34, 0.46, 0.40, and 0.51

Integration time 5ms 18.5ms

FEBRUARY 2020 S CHULTE ET AL . 199

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/22/21 07:41 PM UTC



atmospheric properties to be estimated (LWP, IWP, and

the three leading principal components of the water

vapor profile). Given radiometer observations y, we

wish to find the value of x for which the posterior

probability P(xjy) is maximized. If we consider P(y) to

be a normalizing factor, then this amounts to maximiz-

ing the product of the a priori probability of a given state

P(x) with the probability of measuring the set of Tb if x

were indeed the state of the atmosphere P(yjx). The
relationship between x and y can be generalized by

y5 f (x, b)1 e , (2)

where f is a forward model based on radiative transfer

theory. The forward model requires additional infor-

mation besides the parameters given in x to be able to

calculate simulated Tb (such as the temperature profile,

the surface wind speed, the cloud structure, etc.), and

these various assumptions are represented by the vector

b; e is an error term containing uncertainties due to

sensor noise, errors in the forward model, and uncer-

tainties in the ancillary parameters b. In theory, the

forward modeled brightness temperatures f(x, y) should

agree with the satellite measurements y within the

model and sensor error estimates given by e. The aim of

the 1DVAR algorithm is to find the most likely state

vector x, given measurements y, prior knowledge about

the state of the atmosphere, and proper error estimates.

It can be shown (Rodgers 2000) that, under the as-

sumption of Gaussian errors in the assumed a priori

state and in observed and forward modeled Tb, maxi-

mizing the numerator on the right-hand side of Eq. (1) is

equivalent to minimizing the cost function F:

F5 (x2 x
a
)TS21

a (x2 x
a
)

1 [y2 f (x, b)]TS21
y [y2 f (x,b)]. (3)

The first term inF indicates how far a potential solution

is from the assumed a priori state xa. This difference is

weighted by the assumed errors in the a priori parameters

and their covariances, as described by the a priori covari-

ance matrix Sa. The second term is a measure of the dif-

ference between observed and forward modeled Tb, and it

contains a second error covariance matrix, the Sy matrix,

which describes the uncertainties in both the observations

and the forward model. The Gauss–Newton method is

used to iteratively solve for the value of x at which the

gradient of the cost function =xF is equal to zero.

We use the same forward model as in SK19, the key

components being version 5.3 of the Monochromatic

Radiative Transfer Model (MonoRTM; Clough et al.

2005) for calculating absorption coefficients and the

FASTEM6model of ocean surface emissivity (Kazumori

and English 2015). We also make the same assumptions

as in SK19 about cloud composition and height. To

summarize, cloud water is distributed evenly between

the pressure levels of 800 and 925 hPa, with an as-

sumed monodisperse drop size distribution (DSD) of

spherical cloud droplets with radii of 12mm. Ice parti-

cles are likewise distributed evenly between 300 and

400 hPa, with a parameterization of the ice particle

size distribution that comes from Field et al. (2007),

and scattering calculated according to a database of

single-scattering properties at microwave frequencies

for various ice crystal habits (Liu 2008) as well as an

associated database for larger aggregates of ice crystals

(Nowell et al. 2013). Assumptions made with regard to

ice particles can greatly impact modeledTb (Kulie et al.

2010). While we believe the assumptions made in our

algorithm strike a reasonable balance between sim-

plicity and accuracy, we acknowledge the substantial

uncertainties involved. We direct the reader to SK19

for a quantification of the uncertainties and biases

created by these forward model assumptions (see in

particular Figs. 1 and 2).

b. Construction of covariance matrices and forward
model offsets

The 1DVAR retrieval solution can be very sensitive

to the error covariance matrices Sa and Sy (Duncan and

Kummerow 2016), so it is important that the assumed

uncertainties specified in these matrices are carefully

calculated and not just ad hoc guesses. Sa uncertainties

are estimated from covariances between state vector

values in ERA5 reanalysis data, following SK19. More

interesting is the calculation of the Sy matrix, as well as

forward model Tb offsets that are meant to account for

systematic biases in the forward model and/or the PMW

radiometer.

We start with TEMPEST-D-observed Tb from 8 to

14 December 2018. We match ERA5 atmospheric

profiles, at their full native vertical resolution, to the

TEMPEST-Dpixels, and calculate simulatedTEMPEST-D

Tb using the same radiative transfer model used in the re-

trieval forward model. Pixels for which ERA5 indi-

cates precipitation are excluded. Next, we create a

second set of simulated observations; however, this

time we reduce the accuracy of the simulated Tb by

making the same assumptions made in the retrieval

algorithm. The vertical resolution is reduced, all of

the cloud water and ice is constrained to lie within the

levels specified in the retrieval (given above), and the

vertical profiles of water vapor are simplified to that

which can be best described by only three principal

components (see SK19 for details on how the forward

model handles the water vapor profile). We also add

200 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/22/21 07:41 PM UTC



random perturbations to the surface temperature and

wind speed, the salinity, and the temperature profile,

to mimic the real-world uncertainty present in the

values used for the forward model’s ancillary and as-

sumed parameters.

By comparing these two sets of simulated Tb, one

from a detailed representation of the atmosphere and the

other from the simplified representation of the retrieval

forward model, we can estimate the channel uncertainties

related to the forward model. The Sy matrix is formed by

calculating the covariances of the simulated minus simu-

lated Tb differences and then adding the TEMPEST-D

NEDT for each channel to the diagonal elements of

the matrix. In doing so we assume that instrument

channel errors are uncorrelated, though it is true that

some types of instrument errors, such as the error in

specifying the hot-load temperature, are correlated

across channels.

Each TEMPEST-D pixel without precipitation is

binned based on the sea surface temperature for the

pixel (SST) and the Earth incidence angle (EIA) be-

tween the radiometer boresight and the local vertical

at the location of the pixel. We use 33 SST bins (in 1-K

increments from 273 to 305K) and 30 angle bins (in

48 increments from 2608 to 608). Then a separate Sy

matrix is calculated for each bin, following SK19. Our

justification for this is that the nature of the forward

model errors is dependent both on the atmospheric

regime (for which we use SST as a proxy) and on the

view angle being considered. For example, colder SSTs

are generally associated with reduced total column

water vapor. The TEMPEST-D 87-GHz channel is

more sensitive to the surface when there is less water

vapor, making that channel’s uncertainties more sen-

sitive to SST, wind speed, and emissivity model errors

and thus increasing the channel uncertainty. This can

be seen in Fig. 2. Likewise, when the EIA is large the

slant path through the atmosphere will be longer and

there will be less sensitivity to uncertainties in surface

parameters. A larger EIA also corresponds to a larger

instantaneous field of view, which can further change

the nature of forward model errors due to field-of-view

inhomogeneities. For the higher-frequency channels,

the general trend is that, the more sensitive the channel

is to the upper troposphere, the larger the uncertainty.

Thus the uncertainty increases both as one moves

closer in frequency to the 183-GHz water vapor ab-

sorption line and as the EIA increases. The increased

uncertainty is likely due to both the relatively coarse

resolution of the upper troposphere in the forward

model as well as the simplistic way in which ice clouds

are represented. SK19 found that accounting for these

EIA- and SST-dependent changes in the Sy matrix,

when applying the CSU 1DVAR retrieval to MHS

FIG. 2. Sample forward model error covariance matrices Sy, for the SST bins 275–276 and 300–301K and EIA

bins 08–48 and 528–568. Values are given as the square root of the covariances so as to have units of kelvin. Negative

covariances are shown as 21 times the square root of the absolute value of the covariance. The square root co-

variances are shown for the five radiometer channels centered at 87, 164, 174, 178 and 181GHz.
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observations, made a small but significant difference in

the final retrieved TPW values and led to a greater

consistency across the MHS scans.

This procedure of estimating Sy accounts for many of

the most significant sources of forward model error, par-

ticularly for clear sky conditions where scattering is not a

factor. It also accounts for the random component of in-

strument error, through the addition of the channelNEDT.

However, it does not account for systematic biases that

might exist between the observed and forwardmodeledTb.

These biases could exist for many reasons and could be

related to either instrument or forward model errors. For

example, errors in the measurement of the calibration

load temperature, or the intrusion ofmicrowave radiation

from a non-Earth source such as the spacecraft itself,

could lead to an instrument bias. On the other hand, all of

the sources of forward model error considered in the Sy

calculation, as well as harder-to-quantify uncertainties

such as absorption model and emissivity model errors,

could contribute to a forward model bias. While disen-

tangling all of these effects is difficult, estimating their

cumulative impact is somewhat easier, and we correct for

them by applying Tb offsets, or bias corrections, to the

TEMPEST-D observations before processing them.

To calculate these Tb offsets, we compare the ob-

served TEMPEST-D Tb from 8 to 14 December 2018

with the set of Tb simulated from ERA5 using the sim-

plified model of the atmosphere. As mentioned above,

the nature of forward model errors for each channel is

somewhat dependent on the EIA and the SST regime

being considered. This is true not only for themagnitude of

the error variances and covariances (i.e., the information in

Sy) but also for systematic biases. Likewise, it is reasonable

to suspect that instrument biases might also be dependent

on scan position (John et al. 2013) or scene temperature

(which will to some degree be correlated with SST). Thus,

we bin the bias corrections by EIA and SST, just as we do

the Sy covariances. For each SST/EIA combination bin,

we calculate the median observed minus simulated Tb

from the observation period. We use the median rather

than the mean because the median is less sensitive to

outlier values that can result, for example, if ERA5

misplaces a frontal system relative to where the Tb signa-

ture suggests it should be. The median values are then

smoothed inEIA–SST space using aGaussian convolution

filter, and it is these smoothed values that are used as

forward model offsets in the CSU 1DVAR retrieval. That

is, the appropriate offset for a given pixel’s EIA and SST is

added to the output of the forward model before com-

paring it with the observed Tb. The forward model offsets

for eachTEMPEST-Dchannel are shown inFig. 3, and it is

clear that the offsets are complicated functions of both

EIA and SST. This method of calculating offsets does risk

incorporating biases that might be present in ERA5 into

the final parameters retrieved from TEMPEST-D Tb by

the CSU 1DVAR algorithm. However, since possible

ERA5 biases will be location dependent rather than EIA

dependent, this does not deter our primary objective of

evaluating the consistency of TEMPEST-D retrievals as a

function of EIA.

4. Results

a. Consistency with MHS

The MHS radiometer, with a set of channels that are

quite similar to TEMPEST-D, is a natural instrument

against which to compare observations.Oneway to assess

the quality of TEMPEST-D observations is to compare

TEMPEST-D Tb to MHS Tb using the ‘‘double differ-

ence method.’’ This method shows that TEMPEST-D Tb

are consistent with MHS Tb to within about 1K (slightly

larger differences exist at the 164-GHz channel, because

of band mismatches and surface emissivity sensitivity),

and that the calibration differences are stable with time

(Berg et al. 2019).

Another way to evaluate the consistency withMHS is to

look at retrieved products. MHS instruments are in sun-

synchronous polar orbits, which means that the field of

view of TEMPEST-D coincides with the field of view of

eachMHS radiometer two times per orbit. Figure 4 shows

an example of such an overpass from 9 December 2018.

In this case, TEMPEST-D made observations over the

western Pacific Ocean around 1124 UTC that were nearly

coincident with observations from the MetOp-B satellite.

Figure 4 compares the TPW, LWP, and IWP retrieved

fromTEMPEST-Dby theCSU1DVARalgorithm to that

retrieved fromMetOp-B by the MiRS algorithm. The top

plots show the TEMPEST-D values with theMiRS swath

in the background, and in the bottom plots the order is

reversed. The two products are in broad agreement.

They agree quite well on the placement of liquid phase

clouds to the south of Japan, for instance, as well as the

existence of ice particles north of Papua New Guinea.

Themain features of the water vapor field are the same,

and there are no sharp gradients in TPW when the two

retrieved swaths are plotted on top of each other.

Looking at all TEMPEST-D/MHS near-coincident

observations from the 8–14 December period, the story

is much the same. To identify all such observations, the

data were gridded on an Earth-fixed 0.258 grid (neces-

sary because the MHS and TEMPEST-D footprints and

ground tracks do not match), and observations taken

within 5min of each other were included for analysis. This

resulted in 17869 instances of matched pixels that were

over the ocean and had valid data for both TEMPEST-D

and MiRS. Summary statistics for the difference in
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retrieved TPW and LWP are given in Table 2, and scat-

terplots between TEMPEST-D and MiRS values are

shown in Figs. 5 and 6 for TPW and LWP, respectively.

Because of the time period considered and the inclination

of the TEMPEST-D and MHS orbits, most of the near-

coincident observations occurred in the midlatitudes, so

we caution that the relationships presented here might be

different in other regimes.

Retrieved TPW is correlated very highly, with a cor-

relation coefficient of 0.976 and a standard deviation

of the difference between the two values of 2.87mm.

TEMPEST-D TPW is biased low (negatively) relative to

MiRS TPW; however, note that SK19 found that MiRS

TPW estimates were biased high (positively) relative to

ground-based SuomiNet estimates, so this puts TEMPEST-D

estimates more in line with SuomiNet. The correlation

between LWP estimates is not as strong (r 5 0.692), as

evident in Fig. 6, but this is to be expected. LWP is in-

herently harder to retrieve (e.g., it is very hard to radio-

metrically distinguish cloud water from rainwater) and can

vary dramatically on small spatial scales. Even if both the

MiRSandTEMPEST-D retrieval algorithmswere perfect,

one would expect to see considerable differences in re-

trieved LWP for pixels up to 0.258 apart in space and up to

5min apart in time.

b. Consistency across scan

In SK19, it was shown that MiRS TPW estimates from

MHS instruments tended to be higher near nadir and

drop off at large view angles, and that a similar pattern

FIG. 3. Median TEMPEST-D observedTbminus forwardmodel simulatedTb fromERA5, for all TEMPEST-D orbits from 8 to 14 Dec

2018 and as a function of EIA and SST. The contour lines are plotted in increments of 0.25K. These offsets are applied to simulated Tb in

the retrieval algorithm before the simulated Tb are compared with the observed ones.
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was seen in CSU 1DVAR TPW estimates from cross-

track instruments when constant (i.e., no SST or EIA

dependence) error covariance assumptions were used.

Since MiRS employs scan position-based Tb offsets

meant to account for instrument errors, and the CSU

1DVAR was run using intercalibrated MHS Tb that

should theoretically have no scan asymmetry, it was

speculated that this pattern might be the result of shared

forward model errors (such as the algorithms’ use of the

same surface emissivity model). When the CSU 1DVAR

algorithm was rerun using a variable Sy matrix and for-

ward model offsets that changed based on EIA and SST,

this across-scan bias was almost totally eliminated, even

when the algorithm was run on data from different time

FIG. 4. TPW, LWP, and IWP retrieved from the TEMPEST-D andMetOp-B satellites for a coincident overpass near 1124 UTC 9 Dec

2018: (top) the retrieved TEMPEST-D fields from the CSU 1DVAR retrieval algorithm plotted on top of theMetOp-B retrieved values

and (bottom) the MetOp-B values from MiRS plotted on top of the retrieved TEMPEST-D fields.
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periods and from satellites other than the one used to

calculate the forward model adjustments. This supported

the hypothesis that forward model errors were mostly

responsible for the asymmetry, and that view-angle-

related biases could be corrected by accounting for

these forwardmodel errors (even if the specific causes of

the forward model errors remained hard to diagnose).

Here we perform similar experiments using the

TEMPEST-D instrument, and we once again find that

the methodology presented in section 3b is able to largely

mitigate view-angle-related biases. One way to address

this question is to compare TEMPEST-D retrieved TPW

as a function of EIA with reanalysis data. We use the

European Centre for Medium-Range Weather Forecasts’

reanalysis product, ERA5 (ECMWF 2017), for this purpose.

Considering that ERA5 incorporates a physically based at-

mospheric model, and that TEMPEST-D observations are

not assimilated into ERA5, ERA5 TPW errors should

be independent of TEMPEST-D view angle. Thus, when

comparing a retrieved product to ERA5, one would expect

to find a nearly constant average difference with respect to

EIA. Figure 7 shows the result of this sort of comparison for

allTEMPEST-Dpixels from8 to14December, andconfirms

that the difference with respect to EIA is nearly flat. Also

shown for comparison is the average (MetOp-B) MiRS

TPWbias relative to ERA5 as a function of EIA, and the

same edge-of-scan roll-off found in SK19 is evident.

However, with the unique yawmaneuver dataset from

TEMPEST-D, it is possible to examine potential view-

angle-related biases more directly than in SK19. While

the satellite was in the along-track scanning mode, the

TEMPEST-D instrument viewed the same locations

many times in quick succession. These views can be

categorized according to EIA to examine the consis-

tency of retrieved products in a much more direct way

than was possible in SK19. Figure 8 shows an example of

this. A TEMPEST-D nadir-viewing pixel (located at the

spot marked ‘‘X’’ in Fig. 9) is taken as the reference

point and all preceding or subsequent observations

whose center field-of-view point is within 10km of the

center of the reference pixel are considered to be coin-

cident. Figure 8 shows that the retrieved TPW and LWP

(IWP is negligible in this case) are quite consistent for all

retrievals, with no noticeable dependence on EIA.

This particular case study was chosen in part because

it occurred simultaneous with aMetOp-B overpass with

MHS observations. The CSU 1DVAR algorithm was

also run on the MHS pixel closest to the reference point

for comparison. This value (which was associated with

an EIA of approximately 278) is shown by the constant

red line in Fig. 8. One of the advantages of the optimal

estimation framework is that explicit error estimates are

provided by the posterior error covariance matrix. The

red dashed lines in Fig. 8 represent the 61 standard devi-

ation uncertainty ranges for the MHS-based estimates.

The first thing to note is that the TEMPEST-D estimates

agree reasonably well with the MHS estimates. This is

especially true considering that the TEMPEST-D and

MHS footprints do not align perfectly, and that the ob-

servations were taken a few minutes apart from each

TABLE 2. Error statistics for TEMPEST-D retrieved values from

8 to 14Dec 2018 compared with near-coincidentMiRS values from

the MetOp-A, MetOp-B, and NOAA-19 satellites. Bias values are

TEMPEST-D minus MiRS.

TPW LWP

Correlation coef 0.976 0.692

Bias 21.63mm 20.72 gm22

Std dev 2.87mm 49.01 gm22

FIG. 5. Scatterplot comparing MiRS TPW from the MHS instru-

ments on MetOp-A, MetOp-B, and NOAA-19 with TPW retrieved

from TEMPEST-D, for all coincident observations (n5 17 869) from

8 to 14 Dec 2018. Data have been gridded with a 0.258 resolution, and
observations are counted as coincident if they occur at the same grid

point within 5min of each other. The red line is the one-to-one line.

FIG. 6. As in Fig. 5, but for LWP.
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other. Additionally, the variation between the different

TEMPEST-D estimates is smaller than the uncertainty

associatedwith the singleMHSestimate. This suggests that

the retrieval uncertainty is driven more by uncertain for-

ward model assumptions (which are common to all ob-

servations) than by instrument uncertainties or view-angle

differences.

Taking a larger view, Fig. 9 shows the full context in

which this comparison was made. The TEMPEST-D

ground track is plotted on top of the coincident MHS

swath, with CSU 1DVAR retrieved values of TPW and

LWP. TEMPEST-D crosses a sharp water vapor gradient

near 508S, 308E and also passes over two significant cloud

clusters. Themiddle panels in Fig. 9 show all TEMPEST-D

pixels located within 10km of the red ground track, cate-

gorized byEIAand longitude and colored according to the

retrieved value of TPW or LWP. Matching the colors in

these panels to the corresponding locations in the top

panels, it is seen that there is good agreement between the

TEMPEST-D and MHS observations, particularly with

regard to the sharp water vapor gradient and the location

of clouds. The vertical ‘‘stripes’’ in these plots show that the

retrieved values at a given location tend to be very con-

sistent as a function of EIA. The consistency with MHS

retrievals and between retrievals taken at different view

angles is also apparent when looking at the bottom panels,

which plot the spread of TEMPEST-D values retrieved

along the ground track at all view angles compared with

MHS retrieved values for the MHS pixels closest to the

ground track. From these plots one can see that the

TEMPEST-D retrievals mostly fall within the MHS error

bounds, and also that the spread of the TEMPEST-D re-

trievals is smaller than the overall uncertainty in the MHS

retrievals.

We also consider the entirety (all 73 h) of the

TEMPEST-D yaw maneuver dataset. Observations

are binned into 48 bins according to their EIA, and the

retrieved TPW and LWP are compared with those re-

trieved by TEMPEST-D at the same point at nadir (if no

such observation exists within 5km of the pixel being

considered, that pixel is excluded from the analysis).

Figure 10 shows the median difference between these

observations and observations of the same location at na-

dir. The median difference is nearly independent of EIA

for TPW, and while the relationship for LWP is slightly

noisier, the relationship with EIA is also largely flat.

Figure 10 also shows the resulting biases when the

CSU 1DVAR algorithm is run on the TEMPEST-D yaw

maneuver data without variable forward model Tb off-

sets or error covariance matrices. The mean Tb offset

and average Sy matrix, across all EIA and SST bins, are

used instead. In this case, there are clear patterns in the

TPW and LWP biases with respect to EIA. On the TPW

side, there is both the familiar edge-of-scan roll-off that

is seen in the MiRS data as well as a left-to-right asym-

metry. This is probably the result of an instrument

asymmetry, as a similar pattern is seen when comparing

TEMPEST-D 87-GHz Tb to collocated MHS 89-GHz

FIG. 8. The blue line shows all TEMPEST-D retrieved values of

(top) TPW and (bottom) LWP from 30 Jan 2019, near 0600 UTC

and within 10 km of the point 50.178S, 33.258E, as a function of

EIA. The solid red line represents the corresponding single value

retrieved from a near-coincident observation byMHS, with the red

dashed lines representing61 standard deviation, as reported by the

posterior covariance matrix.

FIG. 7. Mean difference between retrieved TPW and ERA5

reanalysis TPWas a function of EIA for the period 8–14Dec 2018

from the MiRS retrieval run on MetOp-B satellite data (blue)

and from the CSU 1DVAR retrieval run on TEMPEST-D

satellite data (red). The overall mean bias between each re-

trieval and ERA5 has been removed.
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Tb, and the TEMPEST-D Tb have not been calibrated in

any way except for the process of calculating forward

model offsets. Meanwhile, the LWP plot shows that,

under this scenario, LWP becomes biased high at high

view angles, perhaps to compensate for missing TPW. A

third experiment was run in which Sy matrices and

forward model offsets were binned by EIA, but not by

SST. This is similar to the current setup ofMiRS. In this

case, the edge-of-scan bias is reduced but not elimi-

nated. This demonstrates that, because the nature of

EIA-dependent forward model errors is different for

different atmospheric regimes, nuanced error assump-

tions that take into account both EIA and atmospheric

conditions are necessary to fully eliminate view-angle-

related biases. In a final experiment, the forward model

offsets were allowed to vary based upon both EIA and

SST, but the Sy matrix was held constant. Consistent

with SK19, the variable forward model offsets are pri-

marily responsible for improving the across-scan con-

sistency; however, the variable Sy matrix does play a

small role as well.

5. Conclusions

TEMPEST-D observations show that CubeSat mis-

sions offer the potential to greatly increase the frequency

FIG. 9. (top left) TPW and (top right) LWP retrieved by the CSU 1DVAR algorithm for an MHS overpass from MetOp-B over the

Southern Ocean on 30 Jan 2019 around 0600 UTC. The red line shows the ground track of a coincident TEMPEST-D overpass while the

TEMPEST-D satellite was in along-track scanning mode. The black X shows the location of the MHS pixel used as a comparison point in

Fig. 8. (middle) All of the TEMPEST-D pixels within 10 km of the TEMPEST-D ground track, plotted with respect to longitude and EIA.

The color of each dot represents themagnitude of (left) TPWor (right) LWP retrieved. (bottom left) TPWand (bottom right) LWP (solid

blue lines) retrieved by TEMPEST-D at nadir along the ground track, with the shading showing the full range of values retrieved for

the corresponding pixel at all view angles. The green line is the value retrieved at the closest MHS pixel, with shading representing

61 standard deviation, as reported by the posterior covariance matrix.
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of PMW observations across the globe, for use in fore-

casting, data assimilation, and process studies. TEMPEST-

D measurements appear to be of similar quality to MHS

measurements, as evidenced both by the consistency be-

tween TEMPEST-D and MHS Tb and (as demonstrated

in this study), the consistency in atmospheric parameters

retrieved from TEMPEST-D by the CSU 1DVAR algo-

rithm and those retrieved from MHS instruments. This is

true both of MiRS retrievals and of CSU 1DVAR re-

trievals performed on MHS data.

One important consideration when it comes to cross-

track scanning PMW instruments like TEMPEST-D or

MHS is the potential for across-scan biases in retrieved

parameters. This becomes critical as the time sampling of

PMW observations increases to explore changes in an

atmospheric parameter that occur between observations.

In order for actual changes from one observation to an-

other (made with a different satellite and likely with a

different viewing geometry) to be detected, one must

have confidence that differences in retrieved values are

due to actual physical changes and not due to forward

model errors that depend on view angle.

The CSU 1DVAR algorithm has been shown to have

near-zero view-angle bias when it comes to the retrieval

of TPW and LWP from TEMPEST-D observations.

This is true both when comparing TEMPEST-D re-

trieved values to reanalysis estimates and when looking

directly at the same location many times with the

TEMPEST-D instrument when the satellite was per-

forming yaw maneuvers. The elimination of view-angle-

dependent errors is achieved only when assumptions

about both systematic and random errors are allowed

to change based on SST regime and instrument EIA.

Systematic errors are accounted for in the forward

modelTb offsets while random errors are specified in the

error covariance matrix Sy. The physical justification for

doing this is that the nature of forward model errors will

change with atmospheric regime and EIA, as demon-

strated in SK19. When constant error assumptions are

used instead, a clear EIA-related pattern is seen in the

TPW and LWP biases. A similar TPW pattern is seen in

MiRS retrievals on MHS data, suggesting that there

might be forward model errors that are common to both

algorithms. Other optimal-estimation-based retrieval

algorithms might benefit from adopting the approach

presented here of varying error assumptions based on

SST and EIA. While we have used SST (which is cor-

related with TPW) as a proxy for atmospheric regime,

other methods including atmospheric air mass could be

explored.

The lessons learned through the development of the

CSU 1DVAR algorithm about view-angle-related bia-

ses for cross-track scanning PMW radiometers could be

useful for the upcoming TROPICS mission (Blackwell

et al. 2018). TROPICS will consist of six CubeSats with

PMW radiometers measuring at similar frequencies to

TEMPEST-D (with the addition of several channels

near the 118.75-GHz oxygen absorption line) that will

be launched into three different orbital planes, provid-

ing rapid-refresh PMW measurements in the tropics.

With refresh times under one hour in some cases, it

will be important to consider the impact different view

FIG. 10. (left) Median difference between TPW retrieved by TEMPEST-D at a given location and the TPW

retrieved at the same location when the instrument was looking at nadir, for all yaw maneuver observations in the

data record with latitudes between 458S and 458N. Observations are considered to be collocated if the centers of

their respective instantaneous fields of view are within 5 km of each other. Results are shown for the full retrieval

(with both forward model offsets and an Sy matrix that depend on EIA and SST), for the retrieval with no EIA- or

SST-dependent error assumptions at all, for the retrieval with EIA (but not SST) dependent Sy and offsets, and for

the retrieval with EIA and SST dependent offsets but constant Sy. (right) The same type of plot, but for LWP. The

y axis is in terms of percentage difference because of the wide range of values possible for LWP.
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angles could have on observations and to mitigate view-

angle biases as much as possible. This work could also be

of interest to the data assimilation community, since it is

possible that the radiative transfer models used to as-

similate PMW satellite observations could have similar

view-angle-dependent errors to the errors present in the

CSU 1DVAR forward model.

We acknowledge that one limitation of the study is

that the same time period used to calculate the forward

model offsets and error covariance matrix is also used to

test the retrieval algorithm against MiRS. However,

good retrieval results are also seen during the January

and April along-track scanning periods, using the same

offsets and covariances. In addition, the concentration

of TEMPEST-D/MHS overpasses in themidlatitudes on

the dates studied precludes a more thorough analysis of

possible regional biases. Asmore TEMPEST-D data are

collected, it will become possible to conduct even more

rigorous statistical analyses and explore seasonal and

regional dependencies.

Last, we note that the TEMPEST-D yaw maneuver

data used in this study offer many possible avenues for

further exploration. The TEMPEST-D along-track ob-

servations from clear-sky areasmight be able to yield some

insight into possible angle-dependent surface emissivity

model errors near 87 and 164GHz. In addition, looking at

the same scenes from multiple angles gives additional in-

formation that could be used to investigate the vertical

structure of water vapor and clouds. The CSU 1DVAR

algorithm framework is flexible enough that it could

be modified to include multiangle observations. The

TEMPEST-D data are publicly available online (https://

tempest.colostate.edu/data).
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